a2 United States Patent

US009319047B2

(10) Patent No.: US 9,319,047 B2

Jha et al. (45) Date of Patent: Apr. 19, 2016
(54) COMPUTATION OF BOOLEAN FORMULAS (52) US.CL
USING SNEAK PATHS IN CROSSBAR CPC HO3K 19/017581 (2013.01); HO3K 19/08
COMPUTING (2013.01)
(71) Applicant: UNIVERSITY OF CENTRAL (58) Field of Classification Search
pplicant: None
gg%g%?gﬁﬁz;%cg Jando. EL See application file for complete search history.
, ., Orlando,
US
(US) (56) References Cited
(72) Inventors: Sumit Kumar Jha, Oviedo, FL. (US);
Dilia E. Rodriguez, Fayetteville, NY U.S. PATENT DOCUMENTS
(US); Joseph E. Van Nostrand, 8,680,906 B1* 3/2014 McDonald etal. 327/164
Gloversville, NY (US); Alvaro 2013/0334485 Al* 12/2013 Yangetal.ccocoovinenrnee 257)2
Velasquezs West Palm Beach, FL ([JS) 2015/0170025 Al* 6/2015 Wuetal.
% o .
(73) Assignee: UNIVERSITY OF CENTRAL cited by examiner
FLORIDA RESEARCH
FOUNDATION, INC., Orlando, FL Primary Examiner — Jany Richardson
(as) (74) Attorney, Agent, or Firm — Preti Flaherty Beliveau &
Pachios LLP
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. 7 ABSTRACT
Memristor-based nano-crossbar computing is a revolutionary
(21) Appl. No.: 14/573,677 computing paradigm that does away with the traditional Von
eumann architectural separation of memory and computa-
) N hi 1 separati f ry and p
(22) Filed: Dec. 17,2014 tion units. The computation of Boolean formulas using mem-
ristor circuits has been a subject ot several recent investiga-
. _— i ircuits has b bject of 1 investig
(65) Prior Publication Data tions. Crossbar computing, in general, has also been a topic of
US 2015/0171868 Al Jun. 18, 2015 active interest, but sneak paths have posed a hurdle in the
design of pervasive general-purpose crossbar computing
Related U.S. Application Data paradigms. Various embodiments are disclosed which dem-
.. L onstrate that sneak paths in nano-crossbar computing can be
(60) Il’goxélgll%nal application No. 61/917.430, filed on Dec. exploited to design a Boolean-formula evaluation strategy.
’ ’ Such nano-crossbar designs are also an effective approach for
synthesizing hi erformance customized arithmetic an
(51) Imt.ClL ynthesizing high perf ized arithmeti d
HO3K 19/0175 (2006.01) logic circuits.
HO3K 19/08 (2006.01)
HO3K 19/173 (2006.01) 20 Claims, 10 Drawing Sheets

700 \‘ L

710 ~

704 1kOQ

/ 706

734 ~—1

732
750
.’.
742 ~—T
702

US 9,319,047 B2

Sheet 1 of 10

Apr. 19,2016

U.S. Patent

[‘DI
bp/®p =N (b) ebieyd
0LL
Ip/®OP =" Ap/bp =D
IP/AP = Y (A) abeyon

00t

US 9,319,047 B2

Sheet 3 of 10

Apr. 19,2016

U.S. Patent

£ OIA
))) T | * X x x
—Re &&= R | *R* =m*xR* [«Re & «Re| *R*x&=x R * [——02¢
! l ! J * * * *
J) J J e * * *
—O & O | O & *xO* [« & O« *O*x&=x(O*x |-——0I¢
- . \)) * * *

U.S. Patent

410 —

420 —

430 <

r2c.r

r2c.c

440

450 <

r2c.c

r2c.c

Apr. 19, 2016 Sheet 4 of 10 US 9,319,047 B2
T * T *
S>> = -S> -0
T * T *
Sl...Sn* SIOQ.SHT
>R e e RO>=>>-2>R ... 3>
S]..oSn* SloooSnT
* T
Sm & Sm Sm & Sm

. . . ° Y .
L4 L4 ° . . °

S1 @ S1 = S1 X Sq

-O- O
* \)

TSI «eeSn 181 «o.Sn
* OR e e Xk = 2O0OR .. X—
1S1 «eeSn 7S] «eeSn
i) i)

* (O * O
SR
S1 & S1 S1 @ S1
7 T

FIG. 4

U.S. Patent Apr. 19,2016 Sheet 5 of 10 US 9,319,047 B2

— 514
5104 M, = 8<
512
— mip+mp—1
m>—1,n mpj.,n
® 2 1 M¢22 2
520 < My ing, = m,
mi,n m;—1,n
M¢11 1 R 1 2 |
_ % 538
534 ®m2—1,n1+1 Mmg,nz - J
92 :
_ 120K B8 2
530 < My vy = %) SOSIOISIO,
. M- ®m1—1,n2+1 536
e
L 532 %
FIG. 5
k oo Xk
* * - —>
i M,); = M iff v =true
- - - -
k o 00 k

US 9,319,047 B2

Sheet 6 of 10

Apr. 19, 2016

U.S. Patent

L OIA

c0L

.......... .t. \/ N.VB

1474

0GL

ceL

— V€L

— 01LL

/ 00L

US 9,319,047 B2

Sheet 7 of 10

Apr. 19,2016

U.S. Patent

8 DIA
0Z8
0L8
1=0 ‘1=8 ‘L=V -
0= ‘0=9 0=V ..Awl
0¢8

o0s—""

91 Gi
_

v €L ¢l lLOL 6 8 L 9 G v € ¢

L

ot

=

129 e OO AAAD

00+3400°0

G0-400°¢

G0-300°Y

G0-400°9

G0-400°8

¥0-300°1

¥0-302°1

¥0-301°1

US 9,319,047 B2

6 ‘DI

R

Sheet 8 of 10

EFIFIFIFIFIFIFI

Apr. 19,2016

SV B4

006

s?‘ﬁ;ﬁ Al VA Ny AR Pl V4
SNEFI I
VAN VAN NV -dVa

Hs
Pdpdls

U.S. Patent

A28 & 2818 88 & & %

221088020887 888

S B EE& 8] -
S1ElE -
/A

/18165 ole| a0 8] 02] -

PV PN NNV

P28 88888888 8 [8 F 8

P28\ 8 8888|885 EF 888

#1818\ 8| 8| & 8| & 82 8 8] 2

LR

U.S. Patent Apr. 19,2016 Sheet 9 of 10 US 9,319,047 B2

RECEIVING AN INPUT BOOLEAN FORMULA
1010

FOR EACH MEMRISTOR IN A PLURALITY OF MEMRISTORS
OF A MEMRISTOR-BASED CROSSBAR CIRCUIT,
DETERMINING AN ASSOCIATED STATE FOR THE
MEMRISTOR BASED AT LEAST IN PART ON THE INPUT
BOOLEAN FORMULA SUCH THAT THE MEMRISTOR-BASED
CROSSBAR CIRCUIT PROVIDES AT LEAST ONE SNEAK
PATH ALLOWING CURRENT TO FLOW BETWEEN AN INPUT
NANOWIRE AND AN OUTPUT NANOWIRE WHEN THE
BOOLEAN FORMULA IS LOGICALLY TRUE
1020

FIG. 10

U.S. Patent Apr. 19, 2016 Sheet 10 of 10 US 9,319,047 B2

FIG. 11

US 9,319,047 B2

1
COMPUTATION OF BOOLEAN FORMULAS
USING SNEAK PATHS IN CROSSBAR
COMPUTING

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
CA0116UCF2013 awarded by the United States Air Force
Research Laboratory. The government has certain rights in
the invention.

TECHNICAL FIELD

Various embodiments relate generally to crossbar comput-
ing systems, methods, and devices, and more specifically,
relate to methods that organize devices into computing sys-
tems that use sneak paths for the computation of Boolean
formulas.

BACKGROUND

This section is intended to provide a background or con-
text. The description may include concepts that may be pur-
sued, but have not necessarily been previously conceived or
pursued. Unless indicated otherwise, what is described in this
section is not deemed prior art to the description and claims,
and is not admitted to be prior art by inclusion in this section.

In 1971, Leon Chua postulated the existence of a new
circuit element. The three basic two-terminal circuit elements
then known connect pairs of the four circuit variables: cur-
rent, i; voltage, v; charge, q; and magnetic flux, ¢. Five rela-
tionships combining these variables were known: (i) the defi-
nition of current and the definition of voltage from the
induction law of Faraday, and (ii) the three axiomatic defini-
tions of the known circuit elements. Chart 100 of FIG. 1
shows the relations between different elements and physical
properties of circuits. Chua argued completeness required a
sixth relationship 110, which would define the missing circuit
element. Chua called it ‘memristor’, a contraction of memory
and resistor, for its behavior was somewhat like that of a
nonlinear resistor with memory.

Not until 2008 was it physically realized by Stanley Will-
iams and his team at HP Labs (see further: Dmitri B Strukov,
Gregory S Snider, Duncan R Stewart, and R Stanley Will-
iams. The missing memristor found. Nature, 453(7191):80-
83, 2008). Since then, much research has sought to exploit its
properties, from a quest for memristive memories, to mem-
ristive devices for neuromorphic computing, to computa-
tional logic that uses memristors as logic gates.

The evaluation of Boolean formulas, which has garnered
some recent attention, is an enabling technology for synthe-
sizing high-performance, low-power arithmetic and logic cir-
cuits.

There is much literature on memristive evaluation of Bool-
ean formulas. Some representative work in this area includes
Julien Borghetti, Gregory S Snider, Philip J Kuekes, J Joshua
Yang, Duncan R Stewart, and R Stanley Williams ‘Memris-
tive’ switches enable ‘stateful’ logic operations via material
implication, Nature, 464(7290):873-876, 2010. Borghetti, et
al. use two memristors to compute material implication, a
fundamental operation in Boolean logic. They leverage this
designto synthesize a universal NAND gate using three mem-
ristors and three time steps, one initialization step and two
implication steps. Another article, Ella Gale, Ben de Lacy
Costello, and Andrew Adamatzky. Boolean logic gates from a
single memristor via low-level sequential logic. In Uncon-

10

15

20

25

30

35

40

45

50

55

60

65

2

ventional Computation and Natural Computation, pages
79-89, Springer, 2013, describes a single memristor, through
which two pulses pass sequentially, with the second being
sent before the current spike generated by the first stabilizes.
The logical value true is obtained when the current spike goes
past a threshold. These designs have two fundamental prob-
lems. First, they use a few memristors interacting with other
non-memristive circuit elements. It is difficult to put such a
heterogeneous mixture of circuit elements on the same hybrid
chip. Second, they rely on a sequence of correctly timed
inputs, requiring a global clock. Such synchronous extreme-
scale circuits are notoriously difficult to design.

For purposes of fabrication, rather than using a few indi-
vidual memristors, it is more natural to organize sets of them
into crossbar networks. However, if the design or application
requires that memristors be addressed individually, then the
sneak-path problem arises: current flows through unknown
paths in parallel to the memristor of interest, which prevents
correct detection of its resistance or the flow of current
through it. Much research is being devoted to overcoming this
problem. The previously proposed solutions often unavoid-
ably increase the complexity of the fabrication process.

BRIEF SUMMARY

The below summary is merely representative and non-
limiting.

The above problems are overcome, and other advantages
may be realized, by the use of the embodiments.

In a first aspect, an embodiment provides a memristor-
based crossbar for evaluating Boolean formulas. The mem-
ristor-based crossbar includes a plurality of nanowires, hav-
ing an input nanowire and an output nanowire, and a plurality
of memristors.

Inan additional aspect, an embodiment provides a plurality
of memristors that serve as switches that in closed positions
resist the flow of current. The plurality of memristors is con-
figured to encode a Boolean formula.

In a further aspect, an embodiment provides a method for
encoding a given Boolean formula using the plurality of
memristors. The method includes, for each memristor in the
plurality of memristors, determining an associated state for
the memristor, either as a closed switch or as an open switch.
The states of the plurality of memristors are configured such
that a memristor-based crossbar that includes the plurality of
memristors in these states provides at least one sneak path
allowing current to flow from the input nanowire to the output
nanowire when the Boolean formula is logically true.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

Aspects of the described embodiments are more evident in
the following description, when read in conjunction with the
attached Figures.

FIG. 1 shows relations between different elements and
physical properties of circuits.

FIG. 2 illustrates a crossbar lattice with a plurality of mem-
ristors.

FIG. 3 is a graphical representation of operation of a mem-
ristor on various nanowire flows.

FIG. 41is a graphical representation of operation of multiple
memristors on various nanowire flows.

FIG. 5 is a graphical representation of various memristor
arrays.

FIG. 6 is a graphical representation of operation of a mem-
ristor array on an input nanowire flow.

US 9,319,047 B2

3

FIG. 7 illustrates a circuit design for a 1-bit addition circuit
in accordance with an embodiment.

FIG. 8 shows the results of operation of the circuit shown in
FIG. 7.

FIG. 9 illustrates a circuit design for another circuit in
accordance with another embodiment.

FIG.10is alogic flow diagram that illustrates the operation
of'a method, and a result of execution of computer program
instructions embodied on a computer readable memory, in
accordance with various embodiments.

FIG. 11 shows an idealized current/voltage curve for a
memristor.

FIG. 12 shows an example of current flow in a crossbar.

DETAILED DESCRIPTION

This patent application claims priority to U.S. Provisional
Patent Application No.: 61/917,430, filed Dec. 18, 2013, the
disclosure of which is incorporated by reference herein in its
entirety.

The evaluation of Boolean formulas forms the base of
much of computing, including logical and arithmetic calcu-
lations. Various embodiments provide an efficient and low-
energy method that exploits asynchronous memristor-based
crossbars circuits that use sneak paths as a first-class design
primitive.

2. Crossbar Computing

2.1 Memristors

In 1971 Chua stipulated the memristor, which furnished
the missing functional relation 110 among the circuit vari-
ables, relating magnetic flux ¢ and charge q: dp=M dq. Since
d¢=v dt and dg=i dt, the function M defining the memristor
may be expressed equivalently as v=M i, which when linear is
identical with resistance R, but when nonlinear and a function
of'the state of the memristor is a new property. It was not until
2008 that Stanley Williams and his team at HP Labs team
fabricated what they discovered to be a memristor. The dis-
covery was possible when they realized that the current/volt-
age curve of their device showed the characteristic hysteretic
loop of memristors.

FIG. 11 shows an idealized current/voltage curve 1100 for
a memristor. Low- and high-resistance states may be used to
represent Boolean values 1 (or true) and O (or false), respec-
tively. If the voltage applied to a memristor in a low-resistance
state exceeds V.., the memristor toggles from the logical
state true to the logical state false: the memristor switch
closes. If the voltage applied to a memristor in a high-resis-
tance state is less than V.., the memristor toggles from state
false to state true: the memristor switch opens. For voltages in
the range of [V 50 Voper] the memristor is essentially non-
volatile.

2.2 Crossbars

It is natural to organize sets of memristors into crossbar
networks 200: a top set of parallel nanowire electrodes 210,
the row-nanowires, and a bottom set of parallel nanowire
electrodes 220 perpendicular to the top one, the column-
nanowires, and a memristor 230 at each crosspoint, see FIG.
2.

2.3 Sneak Paths: A Problem

Ideally, to determine the state of a memristor at the inter-
section of a row- and a column-nanowire in a crossbar, current
would be passed through that memristor, from which the state
(resistance) of the memristor would be determined. FIG. 12
shows a crossbar in which the memristor 1222 at the inter-
section of row 1 and column 3 nanowires is in its high-
resistance state. The ideal situation is that current from the
input-nanowire 1202 on row 1 would flow along path 1220

open

10

15

20

30

40

45

4

through the memristor 1222, and because of its high-resis-
tance state only a small amount of current would be detected
at the output-nanowire 1204 in column 3. In a crossbar, how-
ever, there are alternative paths through which current may
flow. If a memristor 1222 is in a high-resistance state, alter-
native paths are determined by usually unknown series of
memristors 1212 in low-resistance states, which are called
sneak paths. FIG. 12 shows one such path 1210 determined by
three memristors 1212 in their low-resistance state. They act
as unknown resistances in parallel with memristor 1222. The
amount of current detected at the output-nanowire on column
3 would be significant, giving the impression that the mem-
ristor 1222 is in a low-resistance state.

Thus, a sneak path is a path that connects the row- and
column-electrodes of a memristor in a high-resistance state,
and whose remaining segments are determined by memris-
tors in low-resistance states (see further: Y. Cassuto, S. Kvat-
insky, and E. Yaakobi. Sneak-path constraints in memristor
crossbar arrays. In Information Theory Proceedings (ISIT),
2013 IEEE International Symposium on, pages 156-160,
2013). It is a path through which a significant amount of
current flows.

3. Crossbar Design for Evaluation of Boolean Formulas

This section further describes how some crossbar designs
very naturally encode Boolean formulas, and how to use
sneak paths to compute their value in accordance with various
embodiments.

3.1 NNF: Negation Normal Form

An n-ary Boolean function maps an n-tuple of Boolean
values to a Boolean value. It can be defined by a truth table of
2" rows, one for each possible value an n-tuple may take.
Alternatively and more concisely, it can be defined in terms of
a few Boolean operators or connectives. A set of Boolean
connectives is complete if every Boolean function can be
defined by an expression that uses only the connectives in that
set. The set consisting of the - (negation), A (conjunction),
and Vv (disjunction) connectives is complete. So a Boolean
function can be defined by a well-formed formula (wff) con-
structed as follows: (i) a Boolean (propositional) variable p is
awff; (i1) if ¢ is a wif, - ¢ is a wit; (iii) if ¢, and ¢, are wifs,
¢, A, is a wit, and (iv) if ¢, and ¢, are wifs, ¢,V ¢, is a wit.

One embodiment provides a method to evaluate Boolean
formulas in negation normal form (NFF), which is defined by
a slight change to these rules: the negation connective may be
applied only to a propositional variable. A formula is in nega-
tion normal form (or is a negation normal form) if it is con-
structed as follows: (i) a literal, that is, a propositional vari-
able p or - p, is in NNF, (ii) if ¢, and ¢, are in NNF, ¢, A ¢, is
in NNF, and (iii) if ¢, and ¢, are in NNF, ¢,V ¢, is in NNF.

Any wif constructed using only connectives -, A and
V can be transformed into an equivalent formula in negation
normal form by repeatedly applying the De Morgan Laws:
- (pAQ=-pV-q, and = (pV qQ)=- pA - q, and simplifying
- = p to p. Thus, the method presented below can be used to
evaluate any Boolean expression.

3.2 Sneak Paths: A Tool

Sneak paths are generally regarded as a problem. They are
paths for the current to flow in a crossbar that are determined
by a series of memristors in low-resistance state. This inven-
tion provides a method that encodes a Boolean formula as the
state of a crossbar such that there exists at least one sneak path
between the input nanowire and the output nanowire when the
Boolean formula evaluates to true.

The state of a crossbar depends on the states of its mem-
ristors, and of its row- and column-nanowires. Abstract mod-
els are introduced for these, which help to reason formally

US 9,319,047 B2

5

about the paths of interest: those between the input nanowire
and the output nanowire that are determined by memristors in
low-resistance states.

As FIG. 2 shows, a memristor 230 in a crossbar joins two
nanowires 210, 220 that are in different planes, and perpen-
dicular to each other. In this abstraction, a nanowire (row- or
column-nanowire) 210, 220 may be in one of two states:
either current is flowing through it, represented graphically
by an arrow —; or current is not flowing through it, repre-
sented graphically by *.

Abstractly, a memristor 230 is an operation that may
change the states of the nanowires 210, 220 it joins. A mem-
ristor 230 in a high-resistance state, represented graphically
by & , allows no current through it. The states of'its nanowires
210, 220 cannot change, and thus & acts as an identity opera-
tor. A memristor 230 in a low-resistance state, represented
graphically by O, allows current to flow through it. If its two
nanowires 210, 220 are in the same state, the © operation
preserves their states. When they are in different states, ©
takes the nanowire in the * state to the — state. Thus, © is a
flow-transfer operation.

A two-dimensional abstract view of a memristor and the
nanowires it joins has the memristor in the center, the state of
one nanowire above and below it, and the state of the other to
its left and right. Then the definitions of the memristor opera-
tions © and @ become as shown in FIG. 3. Row 310 defines
the memristor operation ©, which allows current to flow
between the connected nanowires. Row 320 defines the mem-
ristor operation @ , which preserves the state of the connected
nanowires as discussed above.

The physical sharing of nanowires in a row and in a column
of a crossbar leads naturally to horizontal and vertical com-
position of memristor operations. F1G. 4 shows simpler nota-
tion for the state of a segment of a row or column of a crossbar.
For example, neighboring memristors in states ® and © are
depicted as shown in row 410. Since they share a nanowire,
there is no need to redundantly depict the state of this nanow-
ire between them, and they can be presented in a compact
form without the additional indicators.

Sneak paths are determined by a set of memristors in low-
resistance states, ©. Memristor-row and -column segments
may be viewed as operations to construct sneak paths. Let a
subscripted s denote the state of a nanowire. It follows from
the definitions of the © and ® operations that current flowing
through a row may be directed to a column without current by
the operations r2c.7, shown in row 420, and r2¢.¢, shown in
row 430. The operation shown in row 420 is the composition
of a sequence of ® operations with the © operation, all of
which share their row-nanowire. Row 420 shows that when-
ever current is flowing through the shared row-nanowire, this
is in state —; and no current is flowing through the column-
nanowire connected to the © memristor, that is this nanowire
is in the * state, current from the row-nanowire will be
directed to this column, while the state of all the other inter-
sected column-nanowires will be preserved. Likewise, the
operation shown in row 430 is the composition of a sequence
of ® operations with the © operation, all of which share their
column-nanowire. Row 430 shows that current is flowing
through the row-nanowire connected to the memristor, and no
current is flowing through the share column-nanowire, the
operation will direct current from the row-nanowire to the
shared column-nanowire, while preserving the state of all
other intersecting row-nanowires.

Similarly, current flowing through a column may be
directed to a row without current by the following operations
c2r.r, shown in row 440, and c2r.c, shown in row 450.

10

15

20

25

30

35

40

45

50

55

60

65

6

As with operations © and ® , these operations do not take
a nanowire from the — state to * state. Below, the s states are
omitted for greater visual simplicity.

One other useful operation in this abstraction is an array of
memristors in state ® : this array performs an identity opera-
tion on the set of nanowires it intersects. Such an array is
denoted in an m by n array by ® ",

These operations serve to construct sneak paths, and itis a
sneak path that is used to evaluate a Boolean formula.

3.3 Crossbar Design to Evaluate NNFs

Boolean functions can be defined by a Boolean formula in
negation normal form. This section specifies crossbar states
that can be used to evaluate such formulas using sneak paths.

Let ¢ be a Boolean formula in negation normal form. An
array of memristor states M, may be defined as follows.

For ¢=1, a literal, let O=Q if 1 is true and O=@ if 1 is
false. Then, as shown in row 510, the literal 1, can be encoded
by two memristors (O, 512, and ©, 514) in a column.

For a Boolean formula, ¢, of the form ¢=¢, A ¢,, the array
has m,+m,-1 rows and n, +n, columns, and is demonstrated
in row 520. As shown, M, "™, is an m, by n, array that
encodes ¢;, and M, ™™ is an m, by n, array that encodes ¢,.
These arrays share a single row, m,, which is the top row of
M, ™ and the bottom row of M, ™*™. The rest of the
m, +m,—1 by n,+n, array is made up of two arrays of mem-
ristors in state ® : ® ™17 and ® ™11,

For a Boolean formula, ¢, of the form ¢=¢,V ¢, the array
has m,+m, rows and n, +n,+2 columns, and is demonstrated
in row 530. As shown, M, ™, is an m, by n, array that
encodes ¢,, and M, "> is an m, by n, array that encodes ¢,.
The component arrays share no rows or columns. The array
also includes additional vectors, 532, 534, 536 and 538. The
column vector 532 of length m, and the row vector 534 of
length n,+1 provide a path to M,, ">, and the row vector 536
of length n,+1 and the column vector 538 of length m, pro-
vide a path from M,, ™. The remainder of the m,+m, by
n,+n,+2 array is made up of two arrays of memristors in state
®: ® "l gpd @ M-ttt

The array of memristor states M,, is an operation on the
nanowires it intersects. To compute the value of ¢, denoted
v(¢), the array applied to a set of nanowires in which the first
(or bottom) row is in state —, and the other rows and columns
are initially in the * state.

Given a crossbar in the state described above, which is
induced by the formula ¢, there exists a sneak path that takes
current from the first (or bottom) row to the last (or top) row
if and only if (iff) the value of ¢ is true as shown in FIG. 6.

Theorem 1. Crossbar Computation of NNFs

This is shown by structural induction on the negation nor-
mal form ¢. Given a crossbar state in which initially only the
nanowire in the first row is in the — state, a memristor array
M, creates a sneak path that takes the nanowire in the last row
to the — state, if and only if v(¢)=true.

Base case: literal. Formula ¢=1. Assume the row 1 nanow-
ire is in the — state, and the rest of the nanowires are initially
in state *. (i) For v(1)=true, using the M, array in row 510 of
FIG. 5, the O, 512, is a ©. This © operator in row 1 takes the
nanowire in and sets column 1 to state 1. Then, the ©, 514, in
row 2 takes row 2 to the — state. (ii) For v(1)=false, the O,
512, becomes a ® operator. This ® operator in row 1 pre-
serves the * state of column 1, and the ©, 514, in row 2
preserves the * state of row 2.

Inductive step: conjunction. The function ¢=¢,A ¢, is

shown the using the M(p1 A @, array in row 520. The initial
state is row 1 is in the — state, and the rest of the nanowires
are in state *. For M, , the only nanowire in common

US 9,319,047 B2

7

with M, is row m,. For the rest of its nanowires, their initial
* state is preserved by the ® arrays. Then by the induction
hypothesis, M, creates a sneak path that takes row m, to the
— state iff v(¢,)=true. (i) For v(¢,)=false there is no sneak
path that takes row m, to the — state. So the required initial
state for M, is not reached, and no sneak path to the last row

of My, » g, can be created. (ii) For v(¢,)=true there is a
sneak path that takes row m, to the — state. Then by the
induction hypothesis, M,,, creates a sneak path that takes its

last row to the —> state iff v(¢,)=true. Thus, Mo, » ¢, creates
a sneak path that takes its last row to the — state iff v(¢,)=true
and v(¢,)=true.

Inductive step: disjunction. The function ¢=¢,V ¢, is

shown the using the M ©q v @, array in row 530. The initial
state is row 1 is in the — state, and the rest of the nanowires
are in state *. (i) The initial state for the nanowires of M,
holds. The column segment 532 to the left of M,, preserves
the initial state of its rows: © preserves the — state, and
® preserves state *. Then by the induction hypothesis, M,
creates a sneak path that takes its last row to state — iff
v(¢,)=true. By r2c.r, the row segment 536 to the right of M, *s

last row takes the last column of M ©, v @, tostate t. Last, by
c2r.c, the segment of this column 538 above row m, takes the

last row of M, ©1 v @, to state —. (ii) The initial state for the
nanowires of M, also holds. By r2c.c, the column segment
532 to the left of M, takes column 1 to state 1. By c2rr, the
row segment 534 to the left of the first row of M, takes that
row to state —. The & arrays preserve the state ofall the other
nanowires. Then by the induction hypothesis, M,, creates a

sneak path that takes the last row of M @, v, to state — iff

v(¢,)=true. Thus, Mg, v, creates a sneak path that takes its
last row to state — iff v(¢,)=true or v(¢,)=true.

4. Example Embodiment

One non-limiting embodiment is a design of a small Bool-
ean formula and a 1-bit addition circuit. The circuit design for
computing the formula - AA - BA - C is shown in FIG. 7.
The crossbar lattice 700 includes a series of column nanow-
ires 710 and row nanowires 720 which are connected by
various memristors 732, 734, 742, 744, 746. One row nanow-
ire 702 operates as the row 1 nanowire and another row
nanowire operates as the last row nanowire 704 which pro-
vides an output for the crossbar lattice 700. This last row
nanowire 704 is connected to a resistor 706, shown as a 1 kQ
resistor, and through it to ground. Dark colored memristors
734 indicate memristors in the @ state (having a value of 0)
and lightly colored memristors 732,742, 744, 746 are those in
the O state (having a value of 1). Memristor 742 is assigned
the value of = A, memristor 744 is assigned the value of = B
and memristor 746 is assigned the value of - C. The values
assigned to the various memristors may be seen in the follow-
ing matrix (1):

0 0 1 ()
0 1 =-C
1 =B 0
-A 0 0

The memristor-based crossbar example embodies the for-
mula - AA - BA - C recognizing the pattern “A=0, B=0,
C=0”. As a non-limiting example, a turned-off resistance is
10,0009, and 1,00092 is the turned-on resistance. The curve

10

15

20

25

30

35

40

45

50

55

60

65

8

750 shows the flow of the current through the low-resistance
path in the crossbar array 700 when the memristors for - A
742, - B 744, and - C 746 are turned-on. When any of these
memristors is turned-off, there is no low-resistance path from
+V to ground in the crossbar.

The - AA = BA - Cmatrix (1) can be viewed as a conjunc-
tion of two matrices:

1 2
4]
and
0 1 3
1 =C|
-B 0

Note that matrix (3) can also be seen as a conjunction of
two further matrices:

s

and

@)

®

Thus, the matrices (1) and (3) follow the format shown in row
520 of FIG. 5.

Alternatively, this can be seen as a conjunction of the two
matrices:

1 6)
-l
and
0 1 M
1 =B
-A 0
which in turn is a conjunction of:
1 8)
-
and
©

-l

FIG. 8 is a graph 800 which shows the results the circuit
shown in FIG. 7 for two cases.

For the case 820 in which the formula is true, when each of
- A, =B and - C are true, the current owing through the
voltage source is of the order of 10™* amperes. For the case
810 when - A, = B and - C are false, and hence the formula
is false, the current owing through the voltage source is less
than 107>,

US 9,319,047 B2

9
4.2 1-Bit Addition Circuit
FIG. 9 illustrates a design 900 of a nano-crossbar for com-
puting the sum-bit of a 1-bit adder. The values of the mem-
ristors in the design 900 are given as follows, each row and
column location in design 900 corresponding to a position in
the table below:

10

- - 0o O O © O
=== =]

=

o 0O 0O 0 O 0 O O 2 O 2 = » = O O

J

-0 O O O O O O O
d
=S

- 0 0O 0O 0O 0O O O O O O
d
9}

-0 O O O O O O O O O O O
d
=S
O O O O O e, o O 0O 0 0 o o o O

d
9}
o0 0 O = O O O O O O o o o o O

-0 0O 0 0O 0O 0 0 00 00—~ O OO
- 0 O 0O 0 O 0O O~ 0O 0 00 O O O
- 0 0O 0 0O 0O 0 0 000000 0o 0
- OO0 0 00000000000
=)
0 0O 0 0 0 0 00000 oWm— O
0 0O 0 0 0 0 000 00O o0 —~
S 0 O, O 0 0 000~ 0 O O

O;HOOOOOOOOOOOOO

o o o O

o O O O © O

o O O O O O o O
o O O O O O O O O

<

This design represents the Boolean equation: (AA - BA
results of the nano-crossbar design 900 are presented in Table
1. The measured voltage drop relates very well with the
expected logical sum of the 1-bit adder: a voltage drop in
excess of 1 volt indicates the logical value true, while a
voltage drop below 0.5 volts indicates the logical value false.

TABLE 1

>
w

Sum-Logical Sum-Voltage

0.35
1.14
1.2

0.36
1.21

o~ oO
o
=R =R ==
[o

J

a

d
< < < ®

<

:>»—-oo®ooo®ooo®ooo
oé~o®ooo®ooo®ooo

ORIV = = =
OOV RIRRO == =2Q = ==

<

10

15

20

25

30

35

40

=S

10
TABLE 1-continued

A B Cy Sum-Logical Sum-Voltage
0 1 1 0 0.36
1 0 1 0 0.36
1 1 1 1 1.36

Various embodiments provide a design for the evaluation
of Boolean formulas using memristor-based crossbars. In
view of the conventional solutions, this approach is counter-
intuitive. It transfigures sneak paths, typically regarded as a
problem, into first-class design elements.

In an alternative non-limiting embodiment, an array of
memristors may be assigned values which provide a logically
equivalent result, while not being exactly identical. For
example, matrix (10) may be rewritten as the slightly larger
array:

oooo 0 0 0 0 0 0 O 0 0011 an
oooo 0 0 0 0 0 0 O 0 01 CoO
oooo 0 0 0 0 0 0 O 0 1 B OO
1000 0 0O O O O 0 O 0 A0 00D
oooo 0 0 0 0 0 0 O 1 1 001
o6oooo 0 0 0 0 0 O 1 c 0000
o6oooo 0 0 0 0 0 O 1 =B 0 0 00
6ro00 0 0 0 0O O O =-A 0 0O0O0OO0
oOoo0oo0o 0 0 0 0 0 1 0 0 00 0O0f
6000 0 0 0 0 I -C O 0 0000
oooo 0 0 o0 1 B 0O O 0 0000
oooo 0 0 1-A0 0 0 0 0000
0000 O 1 0 0 0 0 0 0 0000
6000 1 -Cc0O 0O 0 0 O 0 0000
0001 -B 0 0 0 0 0 O 0 0000
1114 0 0 0 0 0 0 O 0 0000

Matrix (11) can be generated by successive combination of
sub-matrices such as shown inrow 530 in FIG. 5. Matrix (12),
shown below, represents the same data as Matrix (11) with the
row and column sections (similar to 532, 534, 536, 538)
shown in © and ® notation:

000 0 0 0 0 0 0 0 I (® 12)
00 0 0 0 0 0 0 1 ¢ ®
00 0 0 0 0 0 1 B 0 ®
RRRRO®O® 4 0 1
00 0 0 01 ORRJIAROE
000 0 0 1 ¢ ®©0 0 0 0
000 0 1 =B 0 ® 0 0 0 0
®R® R®-40 0 0 0 0 0
01 ORXRRRXE o 0 0 o
1 =c® 0 0 0 0 0 0 0 0
B 0 ® 0 0 0 0 0 0 0 0
00 ®@ 0 0 0 0 0 0 0 0
®® G 0 0o 0 0 0 0 0 0
000 0 0 0 0 0 0 0 0 0
000 0 0 0 0 0 0 0 0 0
000 0 0 0 0 0 0 0 0 0

US 9,319,047 B2

11
As shown, matrix (12) is the result of a combination of matri-
ces by the disjunction operator. The first combination being
made by combining the following two matrices:

00 1 13)

0 1 -cC

| -5 o [

A D 0
0 1 (14
1_|C

1 B 0]

-A 0 0

This results in the following matrix:

00 0 0 0 0 I (® (1s)
00 0 0 0 1 -c®
o0 0 0 1 B 0 ®
ORIV Q-40 0 Q
® 001 ® ®® O
® 0 1 -c 0o 0 0 0
® L =B 0 0 0 0 0
G A 0 0 0 0 0 0

The matrix (15) can then be combined, using the same tech-
nique for disjunction, with:

0 0 1 (16
0 1 C

1 =B 0

-A 0 0

The matrix (11) is generated by combining the resulting
matrix from the combination of matrix (15) and (16) with:

an

o= o o
o - o
o o 0 -

The techniques described above can be used to create a new
algorithmic framework for constructing memristor-based
nano-crossbar circuits that can implement programs involv-
ing arithmetic and logical operations as well as randomized
algorithms. The resulting computing architecture has appli-
cations in several important areas of computational data sci-
ence and cyber-security, including extreme-scale simulation
of'complex systems such as agent-based models, biochemical
reactions and fluid dynamics computations. By accelerating
satisfiability solving, it also creates new avenues for acceler-
ating other NP-hard problems.

As described above, various embodiments provide a
method, apparatus and computer program(s) to design for the
evaluation of Boolean formulas using memristor-based cross-
bars.

Accordingly, using the techniques described above, any
complex Boolean equation can be broken down into a set of

10

15

20

25

30

40

45

50

65

12

smaller equations and a combining operation (e.g., disjunc-
tion or conjunction). These smaller equations may also be
broken down into even smaller equations until a set of single
value equations is found. Using the smaller equations and the
combining operations, a matrix of memristor values may be
determine such that when assigned to memristors in a cross-
bar lattice the crossbar lattice operates to provide a logical
result in accordance with the complex Boolean equation.

When combining smaller equations using a conjunction
combining operation (e.g., such as a logical AND operation),
the output of the first equation is applied to the input of the
second equation, such as, by having the last row of the first
equation and the first row of the second equation be the same
row. In contrast, when combining smaller equations using a
disjunction combining operation (e.g., such as a logical OR
operation), additional path vectors are provided so that the
input provided to the first equation is also applied to the
second equation and so that the output of the first equation is
combined with the output of the second equation (in other
words, the output of the combination represents the output of
either one of the smaller equations).

In one embodiment, the size of the matrix is determined by
the Boolean equation.

In an alternative embodiment, such as when dealing with
anarray of set size, the matrix of the Boolean equation may be
expanded to fit the size of the array by combining the matrix
ofthe Boolean equation with a @ array. As one non-limiting
example, if the matrix of the Boolean equation is a 4x3 matrix
and is to be applied to a 10x10 matrix, the Boolean equation
may be combined using the disjunction operation with a ® %
array. In another non-limiting example, the combination may
omit the additional path vectors (such as vectors 532, 534 in
FIG. 5) to provide the input to the second equation (if the
second equation is the ® array) or omit the additional path
vectors (such as vectors 536, 538) to combine the outputs (if
the first equation isthe ® array). This allows the matrix of the
Boolean equation to be increased in size by a single column.

FIG. 10 is a logic flow diagram that illustrates a method,
and a result of execution of computer program instructions, in
accordance with various embodiments. In accordance with an
embodiment a method performs, at Block 1010, a step of
receiving an input Boolean formula. The method also per-
forms for each memristor in a plurality of memristors of a
memristor-based crossbar circuit, determining an associated
state for the memristor based at least in part on the input
Boolean formula such that the memristor-based crossbar cir-
cuit provides at least one sneak path allowing current to flow
between an input nanowire and an output nanowire when the
Boolean formula is logically true. The associated state is
either a flow state or a no-flow state.

The various blocks shown in FIG. 10 may be viewed as
method steps, as operations that result from use of computer
program code, and/or as one or more logic circuit elements
constructed to carry out the associated function(s).

A first embodiment provides a circuit for evaluation of
Boolean formulas using memristor-based crossbars. The cir-
cuit includes a crossbar lattice having an input nanowire, an
output nanowire and a plurality of memristors. Each memris-
tor in the plurality of memristors is assigned a flow state or a
no-flow state in accordance with a Boolean formula such that
the circuit provides at least one sneak path allowing current to
flow between the input nanowire and the output nanowire
when the Boolean formula is logically true.

In an additional embodiment of the circuit above, the cross-
bar lattice includes a plurality of row nanowires. The plurality
of row nanowires is arranged in rows and includes the input
nanowire and the output nanowire. The crossbar lattice also

US 9,319,047 B2

13

includes a plurality of column nanowires which are arranged
in columns. Each memristor in the plurality of memristors
connects a unique pair of nanowires. The unique pair includes
an associated row nanowire and an associated column nanow-
ire. The memristors in the crossbar lattice includes are con-
figured to allow the current to flow through the memristors
between the associated row nanowire and the associated col-
umn nanowire when in the flow state and configured to pre-
vent the current from flowing through the memristors
between the associated row nanowire and the associated col-
umn nanowire when in the no-flow state

In a further embodiment of the circuit above, the plurality
of row nanowires are arranged in parallel rows and the plu-
rality of column nanowires are arranged in parallel columns.
The parallel rows are perpendicular to the parallel columns.

In an additional embodiment of any one of the circuits
above, the input nanowire is a first row nanowire in the plu-
rality of row nanowires which is located in a first end position
and the output nanowire is a second row nanowire which is
located in a second end position opposite the first end posi-
tion.

In a further embodiment of any one of the circuits above, a
sneak path is defined as interconnected nanowires through
which the current flows in crossbars.

In an additional embodiment of any one of the circuits
above, the circuit is configured to receive a voltage only at the
input nanowire.

In a further embodiment of any one of the circuits above,
the output nanowire is connected to ground via a resistor.

An additional embodiment provides a method for evalua-
tion of Boolean formulas using a memristor-based crossbars
circuit. The method includes receiving an input Boolean for-
mula. The method also includes, for each memristor in a
plurality of memristors of a memristor-based crossbar circuit,
determining an associated state for the memristor based at
least in part on the input Boolean formula such that the mem-
ristor-based crossbar circuit provides at least one sneak path
allowing current to flow between an input nanowire and an
output nanowire when the Boolean formula is logically true.
The associated state is a flow state or a no-flow state.

In an additional embodiment of the method above, the
memristor-based crossbar circuit includes a crossbar lattice
having an input nanowire, an output nanowire and a plurality
of memristors. The memristor-based crossbar circuit also
includes a plurality of row nanowires arranged in rows and a
plurality of column nanowires arranged in columns. Each
memristor connects a unique pair of nanowires. The unique
pair includes an associated row nanowire and an associated
column nanowire. A memristor is configured to allow the
current to flow through the memristors between the associ-
ated row nanowire and the associated column nanowire when
in a flow state and configured to prevent the current from
flowing through the memristors between the associated row
nanowire and the associated column nanowire when in a
no-flow state.

In a further embodiment of any one of the methods above,
the method also includes setting each memristor in the mem-
ristor-based crossbar circuit to the associated states, provid-
ing a voltage to the input nanowire, measuring a voltage
difference across a resistor connected to the output nanowire
and assigning a result to the Boolean formula based on the
voltage difference.

In an additional embodiment of any one of the methods
above, assigning the result includes, in response to the voltage
difference being relatively high, assigning a value of true to
the result, and, in response to the voltage difference being
relatively low, assigning a value of false to the result.

10

15

20

25

30

35

40

45

50

55

60

65

14

In a further embodiment of any one of the methods above,
the method includes determining the measured voltage dif-
ference to be relatively high when the measured voltage dif-
ference exceeds a first threshold value, and determining the
measured voltage difference to be relatively low when the
measured voltage difference is below a second threshold
value.

In an additional embodiment of any one of the methods
above, the input Boolean formula is a combination of a first
sub-formula and a second sub-formula. The first sub-formula
and the second sub-formula create the input Boolean formula
when combined using a Boolean operation. The Boolean
operation is either a disjunction operation or a conjunction
operation.

In a further embodiment of the method above, the Boolean
operation is the conjunction operation. Determining the asso-
ciated state for each memristor includes determining the asso-
ciated state for each memristor in a first subset of memristors
in the plurality of memristors based at least in part on the first
sub-formula, and determining the associated state for each
memristor in a second subset of memristors in the plurality of
memristors based at least in part on the second sub-formula.
An output row of the first subset is an input row of the second
subset. Determining the associated state also includes deter-
mining the no-flow state for a third subset of memristors in the
plurality of memristors and a fourth memristors in the plural-
ity of memristors.

In an additional embodiment of the method above, the
Boolean operation is the disjunction operation and determin-
ing the associated state for each memristor includes determin-
ing the associated state for each memristor in a first subset of
memristors in the plurality of memristors based at least in part
onthe first sub-formula. Determining the associated state also
includes determining the associated state for each memristor
in a second subset of memristors in the plurality of memris-
tors based at least in part on the second sub-formula and
determining the associated state for each memristor in a first
column path of memristors in the plurality of memristors and
each memristor in a first row path of memristors in the plu-
rality of memristors. The first column path and the first row
path provide a first input to both the first subset and the second
subset. Determining the associated state also includes deter-
mining the associated state for each memristor in a second
row path of memristors in the plurality of memristors and
each memristor in a second column path of memristors in the
plurality of memristors. The second row path and the second
column path provide a logical OR combination of a first
output from the first subset and a second output from the
second subset. Lastly, determining the associated state
includes determining the no-flow state for a third subset of
memristors in the plurality of memristors and a fourth mem-
ristors in the plurality of memristors.

In an additional embodiment of any one of the methods
above, the current flows between the input nanowire and the
output nanowire only when the Boolean formula is logically
true.

In a further embodiment of any one of the methods above,
the Boolean formula is in negation normal form.

Another embodiment provides a computer readable
medium for evaluation of Boolean formulas using a memris-
tor-based crossbars circuit. The computer readable medium is
tangibly encoded with a computer program executable by a
processor to perform actions. The actions include receiving
an input Boolean formula; and for each memristor in a plu-
rality of memristors of a memristor-based crossbar circuit,
determining an associated state for the memristor based at
least in part on the input Boolean formula such that the mem-

US 9,319,047 B2

15

ristor-based crossbar circuit provides at least one sneak path
allowing current to flow between an input nanowire and an
output nanowire when the Boolean formula is logically true.
The associated state is either a flow state or a no-flow state.

In a further embodiment of the computer readable medium
above, the input Boolean formula is a combination of a first
sub-formula and a second sub-formula. The first sub-formula
and the second sub-formula create the input Boolean formula
when combined using a Boolean conjunction operation.
Determining the associated state for each memristor includes
determining the associated state for each memristor in a first
subset of memristors in the plurality of memristors based at
least in part on the first sub-formula; determining the associ-
ated state for each memristor ina second subset of memristors
in the plurality of memristors based at least in part on the
second sub-formula, wherein an output row of the first subset
is an input row of the second subset; and determining the
no-flow state for a third subset of memristors in the plurality
of memristors and a fourth memristors in the plurality of
memristors.

In an additional embodiment of the computer readable
medium above, the input Boolean formula is a combination of
a first sub-formula and a second sub-formula. The first sub-
formula and the second sub-formula create the input Boolean
formula when combined using a Boolean disjunction opera-
tion. Determining the associated state for each memristor
includes determining the associated state for each memristor
in a first subset of memristors in the plurality of memristors
based at least in part on the first sub-formula; determining the
associated state for each memristor in a second subset of
memristors in the plurality of memristors based at least in part
on the second sub-formula; determining the associated state
for each memristor in a first column path of memristors in the
plurality of memristors and each memristor in a first row path
of memristors in the plurality of memristors, wherein the first
column path and the first row path provide a first input to both
the first subset and the second subset; determining the asso-
ciated state for each memristor in a second row path of mem-
ristors in the plurality of memristors and each memristor in a
second column path of memristors in the plurality of mem-
ristors, wherein the second row path and the second column
path provide a logical OR combination of a first output from
the first subset and a second output from the second subset;
and determining the no-flow state for a third subset of mem-
ristors in the plurality of memristors and a fourth memristors
in the plurality of memristors.

In another exemplary embodiment of any one of the com-
puter readable media above, the computer readable medium
is a non-transitory computer readable medium (e.g., CD-
ROM, RAM, flash memory, etc.).

In a further exemplary embodiment of any one of the com-
puter readable media above, the computer readable medium
is a storage medium.

Various operations described are purely exemplary and
imply no particular order. Further, the operations can be used
in any sequence when appropriate and can be partially used.
With the above embodiments in mind, it should be understood
that additional embodiments can employ various computer-
implemented operations involving data transferred or stored
in computer systems. These operations are those requiring
physical manipulation of physical quantities. Usually, though
not necessarily, these quantities take the form of electrical,
magnetic, or optical signals capable of being stored, trans-
ferred, combined, compared, and otherwise manipulated.

Any of the operations described that form part of the pres-
ently disclosed embodiments may be useful machine opera-
tions. Various embodiments also relate to a device or an

10

15

20

25

30

35

40

45

50

55

60

65

16

apparatus for performing these operations. The apparatus can
be specially constructed for the required purpose, or the appa-
ratus can be a general-purpose computer selectively activated
or configured by a computer program stored in the computer.
In particular, various general-purpose machines employing
one or more processors coupled to one or more computer
readable medium, described below, can be used with com-
puter programs written in accordance with the teachings
herein, or it may be more convenient to construct a more
specialized apparatus to perform the required operations.

The procedures, processes, and/or modules described
herein may be implemented in hardware, software, embodied
as a computer-readable medium having program instructions,
firmware, or a combination thereof. For example, the func-
tions described herein may be performed by a processor
executing program instructions out of a memory or other
storage device.

The foregoing description has been directed to particular
embodiments. However, other variations and modifications
may be made to the described embodiments, with the attain-
ment of some or all of their advantages. It will be further
appreciated by those of ordinary skill in the art that modifi-
cations to the above-described systems and methods may be
made without departing from the concepts disclosed herein.
Accordingly, the invention should not be viewed as limited by
the disclosed embodiments. Furthermore, various features of
the described embodiments may be used without the corre-
sponding use of other features. Thus, this description should
be read as merely illustrative of various principles, and not in
limitation of the invention.

What is claimed is:

1. A circuit comprising:

a crossbar lattice having an input nanowire, an output
nanowire and a plurality of memristors,

wherein each memristor in the plurality of memristors is
assigned one of: a flow state and a no-flow state in
accordance with a Boolean formula such that the circuit
provides at least one sneak path allowing current to flow
between the input nanowire and the output nanowire
when the Boolean formula is logically true.

2. The circuit of claim 1, wherein the crossbar lattice com-

prises:

a plurality of row nanowires, the plurality of row nanowires
arranged in rows and the plurality of row nanowires
including the input nanowire and the output nanowire;
and

a plurality of column nanowires, the plurality of column
nanowires arranged in columns; and

wherein each memristor in the plurality of memristors
connects a unique pair of nanowires, the unique pair
including an associated row nanowire and an associated
column nanowire, and

a memristor is configured to allow the current to flow
through the memristors between the associated row
nanowire and the associated column nanowire when in
the flow state and configured to prevent the current from
flowing through the memristors between the associated
row nanowire and the associated column nanowire when
in the no-flow state.

3. The circuit of claim 2, wherein the plurality of row
nanowires are arranged in parallel rows and the plurality of
column nanowires are arranged in parallel columns, the par-
allel rows being perpendicular to the parallel columns.

4. The circuit of claim 2, wherein the input nanowire is a
first row nanowire in the plurality of row nanowires which is
located in a first end position and the output nanowire is a

US 9,319,047 B2

17

second row nanowire which is located in a second end posi-
tion opposite the first end position.

5. The circuit of claim 1, wherein a sneak path comprises
interconnected nanowires through which the current flows in
crossbars.

6. The circuit of claim 1, wherein the circuit is configured
to receive a voltage only at the input nanowire.

7. The circuit of claim 1, wherein the output nanowire is
connected to ground via a resistor.

8. A method for evaluation of a Boolean formula using a
memristor-based crossbar circuit, the method comprising:

receiving an input Boolean formula; and

for each memristor in a plurality of memristors of a mem-

ristor-based crossbar circuit, determining an associated
state for the memristor based at least in part on the input
Boolean formula such that the memristor-based crossbar
circuit provides at least one sneak path allowing current
to flow between an input nanowire and an output nanow-
ire when the Boolean formula is logically true, and the
associated state is one of: a flow state and a no-flow state.

9. The method of claim 8, wherein the memristor-based
crossbar circuit comprises a crossbar lattice having an input
nanowire, an output nanowire and a plurality of memristors,

the memristor-based crossbar circuit includes a plurality of

row nanowires, the plurality of row nanowires arranged
in rows, a plurality of column nanowires, the plurality of
column nanowires arranged in columns, and the plural-
ity of memristors, each memristor connecting a unique
pair of nanowires, the unique pair including an associ-
ated row nanowire and an associated column nanowire,
a memristor is configured to allow the current to flow
through the memristors between the associated row
nanowire and the associated column nanowire when in a
flow state and configured to prevent the current from
flowing through the memristors between the associated
row nanowire and the associated column nanowire when
in a no-flow state.

10. The method of claim 8, further comprising:

setting each memristor in the memristor-based crossbar

circuit to the associated states;

providing a voltage to the input nanowire;

measuring a voltage difference across a resistor connected

to the output nanowire; and

assigning a result to the Boolean formula based on the

voltage difference.

11. The method of claim 10, wherein assigning the result
comprises:

in response to the voltage difference being relatively high,

assigning a value of true to the result; and

in response to the voltage difference being relatively low,

assigning a value of false to the result.

12. The method of claim 11, further comprising:

determining the measured voltage difference to be rela-

tively high when the measured voltage difference
exceeds a first threshold value; and

determining the measured voltage difference to be rela-

tively low when the measured voltage difference is
below a second threshold value.

13. The method of claim 8, wherein the input Boolean
formula is a combination of a first sub-formula and a second
sub-formula,

the first sub-formula and the second sub-formula create the

input Boolean formula when combined using a Boolean
operation, and

the Boolean operation is one of: a disjunction operation

and a conjunction operation.

18

14. The method of claim 13, wherein the Boolean operation
is the conjunction operation and determining the associated
state for each memristor comprises:

determining the associated state for each memristor in a

5 first subset of memristors in the plurality of memristors
based at least in part on the first sub-formula;

determining the associated state for each memristor in a

second subset of memristors in the plurality of memris-

tors based at least in part on the second sub-formula,
wherein an output row of the first subset is an input row
of the second subset; and

determining the no-flow state for a third subset of memris-

tors in the plurality of memristors and a fourth memris-
tors in the plurality of memristors.

15. The method of claim 13, wherein the Boolean operation
is the disjunction operation and determining the associated
state for each memristor comprises:

determining the associated state for each memristor in a

first subset of memristors in the plurality of memristors

based at least in part on the first sub-formula;

determining the associated state for each memristor in a

second subset of memristors in the plurality of memris-

tors based at least in part on the second sub-formula;

determining the associated state for each memristor in a

first column path of memristors in the plurality of mem-
ristors and each memristor in a first row path of mem-
ristors in the plurality of memristors, wherein the first
column path and the first row path provide a first input to
both the first subset and the second subset;

determining the associated state for each memristor in a

second row path of memristors in the plurality of mem-

ristors and each memristor in a second column path of
memristors in the plurality of memristors, wherein the

second row path and the second column path provide a

logical OR combination of a first output from the first

subset and a second output from the second subset; and

determining the no-flow state for a third subset of memris-
tors in the plurality of memristors and a fourth memris-
tors in the plurality of memristors.

16. The method of claim 8, wherein the current flows
between the input nanowire and the output nanowire only
when the Boolean formula is logically true.

17. The method of claim 8, wherein the Boolean formula is
in negation normal form.

18. A non-transitory computer readable medium tangibly
encoded with a computer program executable by a processor
to perform actions comprising:

receiving an input Boolean formula; and

for each memristor in a plurality of memristors of a mem-

ristor-based crossbar circuit, determining an associated

state for the memristor based at least in part on the input

Boolean formula such that the memristor-based crossbar

circuit provides at least one sneak path allowing current

to flow between an input nanowire and an output nanow-
ire when the Boolean formula is logically true, and the
associated stateis one of: a flow state and a no-flow state.

19. The non-transitory computer readable medium of claim
18, wherein the input Boolean formula is a combination of a
first sub-formula and a second sub-formula, the first sub-
formula and the second sub-formula create the input Boolean
formula when combined using a Boolean conjunction opera-
tion, and determining the associated state for each memristor
comprises:

determining the associated state for each memristor in a

first subset of memristors in the plurality of memristors

based at least in part on the first sub-formula;

20

25

30

35

40

45

50

55

60

US 9,319,047 B2

19

determining the associated state for each memristor in a
second subset of memristors in the plurality of memris-
tors based at least in part on the second sub-formula,
wherein an output row of the first subset is an input row
of the second subset; and

determining the no-flow state for a third subset of memris-
tors in the plurality of memristors and a fourth memris-
tors in the plurality of memristors.

20. The non-transitory computer readable medium of claim
18, wherein the input Boolean formula is a combination of a
first sub-formula and a second sub-formula, the first sub-
formula and the second sub-formula create the input Boolean
formula when combined using a Boolean disjunction opera-
tion, and determining the associated state for each memristor
comprises:

determining the associated state for each memristor in a

first subset of memristors in the plurality of memristors
based at least in part on the first sub-formula;

10

15

20

determining the associated state for each memristor in a
second subset of memristors in the plurality of memris-
tors based at least in part on the second sub-formula;

determining the associated state for each memristor in a
first column path of memristors in the plurality of mem-
ristors and each memristor in a first row path of mem-
ristors in the plurality of memristors, wherein the first
column path and the first row path provide a first input to
both the first subset and the second subset;

determining the associated state for each memristor in a
second row path of memristors in the plurality of mem-
ristors and each memristor in a second column path of
memristors in the plurality of memristors, wherein the
second row path and the second column path provide a
logical OR combination of a first output from the first
subset and a second output from the second subset; and

determining the no-flow state for a third subset of memris-
tors in the plurality of memristors and a fourth memris-
tors in the plurality of memristors.

#* #* #* #* #*

